Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Cells Mol Dis ; 104: 102796, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717409

RESUMEN

Thrombopoiesis is the production of platelets from megakaryocytes in the bone marrow of mammals. In fish, thrombopoiesis involves the formation of thrombocytes without megakaryocyte-like precursors but derived from erythrocyte thrombocyte bi-functional precursor cells. One unique feature of thrombocyte differentiation involves the maturation of young thrombocytes in circulation. In this study, we investigated the role of hox genes in zebrafish thrombopoiesis to model platelet production. We selected hoxa10b, hoxb2a, hoxc5a, hoxd3a, and hoxc11b from thrombocyte RNA expression data, and checked whether they are expressed in young or mature thrombocytes. We found hoxa10b, hoxb2a, hoxc5a, and hoxd3a were expressed in both young and mature thrombocytes and hoxc11b was expressed in only young thrombocytes. We then performed knockdowns of these 5 hox genes and found hoxc11b knockdown resulted in thrombocytosis and the rest showed thrombocytopenia. To identify hox genes that could have been missed by the above datasets, we performed knockdowns 47 hox genes in the zebrafish genome and found hoxa9a, and hoxb1a knockdowns resulted in thrombocytopenia and they were expressed in both young and mature thrombocytes. In conclusion, our comprehensive knockdown study identified Hoxa10b, Hoxb2a, Hoxc5a, Hoxd3a, Hoxa9a, and Hoxb1a, as positive regulators and Hoxc11b, as a negative regulator for thrombocyte development.


Asunto(s)
Trombocitopenia , Trombopoyesis , Animales , Trombopoyesis/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Genes Homeobox , Plaquetas/metabolismo , Megacariocitos , Trombocitopenia/genética , Mamíferos/genética
2.
Sci Rep ; 13(1): 16066, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752184

RESUMEN

Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b, and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b, and mir-223 knockdowns. These results suggested mir-7148, let-7b, and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8, and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa, and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223. We also identified that tgif1, cebpa, ikzf1, irf5, irf8, and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.


Asunto(s)
MicroARNs , Trombocitopenia , Trombosis , Adulto , Humanos , Animales , Trombopoyesis/genética , Pez Cebra/genética , Factores Reguladores del Interferón , MicroARNs/genética
3.
Res Sq ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162944

RESUMEN

Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b , and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b , and mir-223 knockdowns. These results suggested mir-7148, let-7b , and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8 , and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa , and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223 . We also identified that tgif1, cebpa, ikzf1, irf5 , irf8 , and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.

4.
Blood Coagul Fibrinolysis ; 33(5): 272-279, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35802508

RESUMEN

The aim of this study is to model classical Bernard Soulier Syndrome in the zebrafish by targeting Gp1ba. We obtained gp1ba mutant embryos from Zebrafish International Resource Center and grew them to adulthood. The tail clips from these fish were used to prepare DNA and sequenced to identify heterozygotes. They were then bred to obtain homozygotes. The mutation was confirmed by DNA sequencing as a termination codon UAA in place of AAA codon at position 886 in the gp1ba transcript. Thus, at the Pro-295, the Gp1ba protein could be terminated. The blood from gp1ba homozygous and heterozygous mutants showed decreased ristocetin-mediated agglutination in the whole blood agglutination assay. The gp1ba heterozygous and homozygous larvae were subjected to a laser-assisted arterial thrombosis assay, and the results showed the prolonged occlusion in the caudal artery. These results suggested that the gp1ba mutant had a bleeding phenotype. The blood smears from the adult gp1ba, heterozygous and homozygous mutants, showed macrothrombocytes, similar to the human GP1BA deficiency that showed giant platelets. The bleeding assay on these heterozygous and homozygous mutants showed greater bleeding than wildtype, confirming the above findings. Taken together, the characterization of gp1ba zebrafish mutant suggested an autosomal dominant mode of inheritance. The zebrafish gp1ba mutant models classical Bernard Soulier Syndrome and could be used for reversing this phenotype to identify novel factors by the genome-wide piggyback knockdown method.


Asunto(s)
Síndrome de Bernard-Soulier , Animales , Síndrome de Bernard-Soulier/genética , Plaquetas/metabolismo , Hemorragia/genética , Hemorragia/metabolismo , Heterocigoto , Homocigoto , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Pez Cebra/genética , Pez Cebra/metabolismo
5.
PLoS One ; 17(3): e0264776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320267

RESUMEN

The zebrafish is an excellent model system to study thrombocyte function and development. Due to the difficulties in separating young and mature thrombocytes, comparative transcriptomics between these two cell types has not been performed. It is important to study these differences in order to understand the mechanism of thrombocyte maturation. Here, we performed single-cell RNA sequencing of the young and mature zebrafish thrombocytes and compared the two datasets for young and mature thrombocyte transcripts. We found a total of 9143 genes expressed cumulatively in both young and mature thrombocytes, and among these, 72% of zebrafish thrombocyte-expressed genes have human orthologs according to the Ensembl human genome annotation. We also found 397 uniquely expressed genes in young and 2153 uniquely expressed genes in mature thrombocytes. Of these 397 and 2153 genes, 272 and 1620 corresponded to human orthologous genes, respectively. Of all genes expressed in both young and mature thrombocytes, 4224 have been reported to be expressed in human megakaryocytes, and 1603 were found in platelets. Among these orthologs, 156 transcription factor transcripts in thrombocytes were found in megakaryocytes and 60 transcription factor transcripts were found in platelets including a few already known factors such as Nfe2 and Nfe212a (related to Nfe2) that are present in both megakaryocytes, and platelets. These results indicate that thrombocytes have more megakaryocyte features and since platelets are megakaryocyte fragments, platelets also appear to be thrombocyte equivalents. In conclusion, our study delineates the differential gene expression patterns of young and mature thrombocytes, highlighting the processes regulating thrombocyte maturation. Future knockdown studies of these young and mature thrombocyte-specific genes are feasible and will provide the basis for understanding megakaryocyte maturation.


Asunto(s)
Plaquetas , Pez Cebra , Animales , Plaquetas/metabolismo , Pruebas de Función Plaquetaria , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Thromb Haemost ; 122(7): 1104-1114, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34918310

RESUMEN

Tissue factor pathway inhibitor (TFPI) is an anticoagulant that inhibits factor VIIa and Xa in the blood coagulation pathways. TFPI contains three Kunitz domains, K1, K2, and K3. K1 and K2 inhibit factor VIIa and Xa, respectively. However, the regulation of TFPI is poorly studied. Since zebrafish has become an alternate model to discover novel actors in hemostasis, we hypothesized that TFPI regulation could be studied using this model. As a first step, we confirmed the presence of tfpia in zebrafish using reverse transcription polymerase chain reaction. We then performed piggyback knockdowns of tfpia and found increased coagulation activity in tfpia knockdown. We then created a deletion mutation in tfpia locus using the CRISPR/Cas9 method. The tfpia homozygous deletion mutants showed increased coagulation activities similar to that found in tfpia knockdown. Taken together, our data suggest that tfpia is a negative regulator for zebrafish coagulation, and silencing it leads to thrombotic phenotype. Also, the zebrafish tfpia knockout model could be used for reversing this thrombotic phenotype to identify antithrombotic novel factors by the genome-wide piggyback knockdown method.


Asunto(s)
Factor VIIa , Pez Cebra , Animales , Factor VIIa/metabolismo , Factor Xa/metabolismo , Homocigoto , Lipoproteínas , Eliminación de Secuencia , Pez Cebra/genética
7.
Sci Rep ; 11(1): 15238, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315984

RESUMEN

Tissue factor pathway inhibitor (TFPI) is an anticoagulant protein that inhibits factor VIIa and Xa in the coagulation cascade. It has been shown that forkhead box P3 protein is a TFPI transcriptional repressor. However, there are no studies on chromatin remodeling that control TFPI expression. We hypothesized that the genome-wide knockdowns of the chromatin binding and regulatory proteins (CBRPs) in zebrafish could identify novel tfpia gene regulators. As an initial step, we selected 69 CBRP genes from the list of zebrafish thrombocyte-expressed genes. We then performed a 3-gene piggyback knockdown screen of these 69 genes, followed by quantification of tfpia mRNA levels. The results revealed that knockdown of brd7, ing2, ing3, ing4, and suz12b increased tfpia mRNA levels. The simultaneous knockdown of these 5 genes also increased tfpia mRNA levels. We also performed individual gene and simultaneous 5-gene knockdowns on the 5 genes in zebrafish larvae. We found that after laser injury, it took a longer time for the formation of the thrombus to occlude the caudal vessel compared to the control larvae. We then treated the larvae and adults with a chemical UNC6852 known to proteolytically degrade polycomb repressor complex 2, where SUZ12 is a member, and observed prolongation of time to occlude (TTO) the caudal vein after laser injury and increased tfpia mRNA levels in larvae and adults, respectively. In summary, our results have identified novel epigenetic regulators for tfpia and exploited this information to discover a drug that enhances tfpia mRNA levels and prolongation of TTO. This discovery provides the basis for testing whether UNC6852 could be used as an antithrombotic drug. This approach could be used to study the regulation of other plasma proteins, including coagulant and anticoagulant factors.


Asunto(s)
Antitrombinas/farmacología , Cromatina/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Sistemas de Liberación de Medicamentos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
8.
Blood Adv ; 3(9): 1406-1415, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31053568

RESUMEN

Zebrafish thrombocytes are similar to mammalian platelets. Mammals have young platelets (also called reticulated platelets) and mature platelets. Likewise, zebrafish have 2 populations of thrombocytes; one is DiI-C18 (DiI)+ (DP), and the other is DiI- (DN). However, the mechanism of selective thrombocyte labeling by DiI is unknown. Furthermore, there is no transgenic zebrafish line where DP and DN thrombocytes are differentially labeled with fluorescent proteins. In this study, we found that Glo fish, in which the myosin light chain 2 promoter drives the rfp gene, have a population of thrombocytes that are red fluorescent protein (RFP) labeled. We also generated transgenic GloFli fish in which DP and DN thrombocytes are labeled with RFP and green fluorescent protein (GFP), respectively. Single-cell lipid analysis showed a twofold increase in phosphatidylethanolamine (PE) and a twofold decrease in phosphatidylcholine (PC) in RFP+ thrombocytes compared with GFP+ thrombocytes, suggesting that lipid composition may be important for DiI differential labeling. Therefore, we tested liposomes prepared with different ratios of PC and PE and observed that liposomes prepared with higher amounts of PE favor DiI labeling, whereas the PC concentration had a modest effect. In liposomes prepared using only PE or PC, increased concentrations of PE resulted in increased DiI binding. These results suggest that because RFP+ thrombocytes have higher PE concentrations, DiI may bind to them efficiently, thus explaining the selective labeling of thrombocytes by DiI. This work also provides GloFli fish that should be useful in understanding the mechanism of thrombocyte maturation.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Plaquetas/metabolismo , Proteínas Fluorescentes Verdes/genética , Lípidos/análisis , Proteínas Luminiscentes/genética , Animales , Carbocianinas/química , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Fosfatidilcolinas/análisis , Fosfatidiletanolaminas/análisis , Análisis de la Célula Individual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Pez Cebra , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...